
Introduction Model Comparison of Optimizations Individual Stage Optimizations

Some “Conventional” Methods For Solving Spatial Models

(Quickly)

Jeffrey Sun

April 24, 2024

1

Introduction

Introduction Model Comparison of Optimizations Individual Stage Optimizations

Introduction

• A constructive theory of the model solution

• An attempt to generalize, package, and usefully share what I’ve learned

• All “conventional:” no machine learning, GPUs, sparse grids, continuous time

2

Introduction Model Comparison of Optimizations Individual Stage Optimizations

Background

• Coding up JMP quickly got too complicated

• Had to break up into clear, computationally separate blocks

• As each block got simpler, it became more general and optimized

• Over time: reusable, composable, optimized modules for writing fast models quickly

• No claims about novelty, only hopes about usefulness

3

Introduction Model Comparison of Optimizations Individual Stage Optimizations

Overview

1. A simple dynamic spatial model with migration, and wealth and income heterogeneity

2. High-level decomposition of model solution

3. Decomposition of intra-period household problem into “stages”

4. Comparison of benefits of some optimizations

4

Model

Introduction Model Comparison of Optimizations Individual Stage Optimizations

Model

• Discrete time t, locations ℓ ∈ L, small open economy, perfect foresight (for now)

• Each location has exogenous wage wℓt and amenity αℓt, exogenous rental-only housing

stock Hℓt and equilibrium rent ρℓt

• Atomistic households i have state xit ∈ X,

xit = (kit−1︸ ︷︷ ︸
wealth

, zit︸︷︷︸
income type

, ℓit−1︸ ︷︷ ︸
location

, ait︸︷︷︸
age

).

(Boundary conditions and some details omitted.)

5

Introduction Model Comparison of Optimizations Individual Stage Optimizations

Each period t, household i:

• Begins with wealth kit−1, income type zit, location ℓit−1, age ait

• Receives i.i.d. Gumbel location preference shocks {εiℓt}
• Chooses location ℓit, goods consumption cit, and housing consumption hit, s.t.

kit ≡ (1 + r)kit−1 + wℓitzit − cit − ρℓithit ≥ 0

• Receives utility,

uit =
α1−η
ℓitt

(cρit + γhρit)
1−η
ρ − 1

1− η
−Dℓit−1,ℓit + εiℓitt

• Realizes Markov income type shock zit+1 ∼ Γ(zit)

• Ages ait+1 = ait + 1 or receives bequest utility

Household maximizes expected lifetime utility, exponentially discounted at rate β

6

Introduction Model Comparison of Optimizations Individual Stage Optimizations

High-Level Solution Decomposition

Let the beginning and end-of-period household value functions and state distributions be,

V start
t : X → R, V end

t : X → R, λstartt : P(X) → R, λendt : P(X) → R.

Computationally, these are just arrays (for today). A solution consists of:

1. An intra-period household’s problem solution:

H : (V end
t , λstartt , {ρℓt}ℓ, θ) 7→ (V start

t , λendt ,Momentst)

2. A set of defining equation functions:

(Market Clearing) E : (Momentst, {Hℓt}) 7→ ExcessDemandt

(Period Boundaries) B : (V end
t , V start

t+1 , λendt , λstartt+1) 7→ Bt

(Calibration) C : (Momentst,DataMomentst) 7→ MomentErrort

3. A solver, S : (H, E ,B, C) 7→
(
{V end

t , V start
t , λendt , λstartt , ρℓt}t, θ

)
I build models by taking these components and composing them. 7

Introduction Model Comparison of Optimizations Individual Stage Optimizations

Household Problem Decomposition

An intra-period household problem solution (IPHP) is separable into two functions,

Hback :(V end
t , {ρℓt}ℓ, θ) 7→ (V start

t)

Hforward :(V end
t , λstartt , {ρℓt}ℓ, θ) 7→ (λendt ,Momentst).

Each can be further decomposed into “stages” which occur in succession:

Income Shock

Choose Consumption

Receive Income

Choose Location Each stage s has

Hback
s : (V end

st , {ρℓt}ℓ, θ) 7→ (V start
st)

Hforward
s : (V end

s−1,t, λ
start
st , {ρℓt}ℓ, θ) 7→ (λendst ,Momentsst)

where
V end
s−1,t = V start

st

λstartst = λends−1,t

Build model from pre-built, optimized stages 8

Introduction Model Comparison of Optimizations Individual Stage Optimizations

Household Problem Code

function solve_period !(prealloc , V_next , params)

V_preshock = get_V_preshock(prealloc , V_next)

V_consume = get_V_preconsume(V_preshock , prealloc)

V_income = get_V_preincome(V_consume , prealloc , params)

enforce_borrowing_constraint !(V_preincome , prealloc)

V_premove = get_V_premove(V_preincome , prealloc , params)

V_end = YOUR_CODE_HERE(V_premove , prealloc , params)

end

9

Comparison of Optimizations

Introduction Model Comparison of Optimizations Individual Stage Optimizations

Benchmark

• 1000 locations, 129 wealth states, 5 income types, 6 age groups = 3.87m gridpoints

• Single-thread CPU

• Language: Julia

• Strawman: Jeffrey, May 2023

• One evaluation of household problem

• Initial time: 218s (3m38s)

10

Introduction Model Comparison of Optimizations Individual Stage Optimizations

Low-Hanging Fruit

• Initial: 218s

• Memory Preallocation: 218s → 152s

• (Almost) Automatic Multithreading: 152s → 49s

• 32 Bit Precision: 49s → 31.9s

11

Introduction Model Comparison of Optimizations Individual Stage Optimizations

Individual Stage Optimizations

Income Shock 4.52s → 0.028s

Choose Consumption 0.498s → 0.025s

Receive Income 0.38s → 0.019s

Choose Location 25.2s → 9.78s → 0.053s

Overall: 31.9s → 0.353s (= 0.126s listed stages + 0.228s other)

12

Individual Stage Optimizations

Introduction Model Comparison of Optimizations Individual Stage Optimizations

Choose Location

Let V start
tsι (ℓ) = V start

ts (kιt−1, zιt, ℓ, aιt), V end
tsι (ℓ) similar

where ι indexes all household types up to location.

The i.i.d. Gumbel location preference shocks imply:

exp
(
ψV start

tsι (ℓ)
)
=

∑
ℓ′

exp
(
ψ
(
V end
tsι (ℓ′)−Dℓℓ′

))
P (ℓ′ = ℓ0 | ℓ) =

exp
(
ψ
(
V end
tsι (ℓ′)−Dℓℓ′

))
exp (ψV start

tsι (ℓ))

λendtsι (ℓ) =
∑
ℓ′

P (ℓ′ = ℓ | ℓ)λstarttsι (ℓ′)

First optimization: Precompute exp (ψV start
tsι (ℓ)), then P (ℓ′ = ℓ0 | ℓ), then λendtsι (ℓ)

Time: 25.2s → 9.78s
13

Introduction Model Comparison of Optimizations Individual Stage Optimizations

Choose Location

Second optimization: observe that (with ⊗ and ⊘ elementwise mult. and div.)

Ṽ start
ts = DṼ end

ts

Λend
ts = Ṽ end

ts ⊗ (D′Λstart
ts ⊘ Ṽ start

ts)

where matrices Dℓℓ′ = exp (−ψDℓℓ′)(
Ṽ start
ts

)
ℓι
= exp

(
ψV start

tsι (ℓ)
)

(
Ṽ end
ts

)
ℓι
= exp

(
ψV end

tsι (ℓ)
)

(
Λend
ts

)
ℓι
= λendtsι (ℓ)

No matter the size of the state space, just two matrix multiplications!

Time: 9.78s → 0.053s

14

Introduction Model Comparison of Optimizations Individual Stage Optimizations

The Power of Matrix Multiplication

Why is matrix multiplication 200 faster than an explicit loop?

• Surprising algorithms exist to multiply two matrices in as little as O(n2.371552) time

• Most CPUs have specialized hardware for matrix multiplication

• Pretty much exactly the same thing works for CES production functions, etc.

• Similar approach to optimizing income shocks, or any finite-state Markov process

15

Introduction Model Comparison of Optimizations Individual Stage Optimizations

Choose Consumption

• Strategy: Gridsearch

• If MPC ≥ 0, then my optimal saving is between my wealth-neighbors’

• Don’t need to search over entire axis!

• By “sharing” information between wealth-neighbors: O(N2) → O(N logN)

• Incompatible with vectorization (Python, Matlab) but fast in Julia

• Similar approach for linear interpolation of many gridpoints

16

Introduction Model Comparison of Optimizations Individual Stage Optimizations

Outer Loop Optimization

• Currently, takes 396 iterations to solve for prices, using tatonnement. 146s total.

• With autodiff + LBFGS (fancy improvement over Newton’s method), hope to get

under ∼ 10s for steady state solution

17

Introduction Model Comparison of Optimizations Individual Stage Optimizations

Global Solution

• These “conventional” methods enable the global solution to my JMP model

• Global solution: a solver and boundary conditions equations on V start, V end which

take the IPHP as given

• A neural network is trained to predict V end. Everything else is conventional

• In particular, no neural network used to approximate policy function

18

Introduction Model Comparison of Optimizations Individual Stage Optimizations

Next Steps

• Write papers!

• Create ensemble models – standard in climate science

• Package up stages and solver modules

• Write some tutorials for users

• Rewrite modules for GPU, cluster platforms

19

Introduction Model Comparison of Optimizations Individual Stage Optimizations

Conclusion

• Attempt to standardize one class of model solutions, and pre-write necessary modules

• “Conventional methods” have some life in them yet

• Hard to see how this becomes a paper per se, but already useful to me

• A bunch of “obvious” stuff with non-obvious power

• No one part is super exciting/novel. But their usefulness compounds exponentially

20

	Introduction
	Model
	Comparison of Optimizations
	Individual Stage Optimizations

