Some "Conventional" Methods For Solving Spatial Models (Quickly)

Jeffrey Sun April 24, 2024

Introduction

Introduction $0 \oplus 00$	Model	Comparison of Optimizations	Individual Stage Optimizations
	000000	0000	000000000

Introduction

- A constructive theory of the model solution
- An attempt to generalize, package, and usefully share what I've learned
- All "conventional:" no machine learning, GPUs, sparse grids, continuous time

Background

- Coding up JMP quickly got too complicated
- Had to break up into clear, *computationally separate* blocks
- As each block got simpler, it became more general and optimized
- Over time: reusable, composable, optimized modules for writing fast models quickly
- No claims about novelty, only hopes about usefulness

Introduction $000 \bullet$	Model	Comparison of Optimizations	Individual Stage Optimizations
	000000	0000	000000000
Overview			

- 1. A simple dynamic spatial model with migration, and wealth and income heterogeneity
- 2. High-level decomposition of model solution
- 3. Decomposition of intra-period household problem into "stages"
- 4. Comparison of benefits of some optimizations

 \mathbf{Model}

Introduction 0000	Model 0●0000	Comparison of Optimizations 0000	Individual Stage Optimizations 000000000
Model			

- Discrete time t, locations $\ell \in L$, small open economy, perfect foresight (for now)
- Each location has exogenous wage $w_{\ell t}$ and amenity $\alpha_{\ell t}$, exogenous rental-only housing stock $H_{\ell t}$ and equilibrium rent $\rho_{\ell t}$
- Atomistic households i have state $x_{it} \in X$,

$$x_{it} = (\underbrace{k_{it-1}}_{\text{model}}, \underbrace{z_{it}}_{\text{income type}}, \underbrace{\ell_{it-1}}_{\text{location}}, \underbrace{a_{it}}_{\text{age}})$$

wealth income type location age

(Boundary conditions and some details omitted.)

Introduction 0000	Model	Comparison of Optimizations	Individual Stage Optimizations
	00●000	0000	000000000

Each period t, household i:

- Begins with wealth k_{it-1} , income type z_{it} , location ℓ_{it-1} , age a_{it}
- Receives i.i.d. Gumbel location preference shocks $\{\varepsilon_{i\ell t}\}$
- Chooses location ℓ_{it} , goods consumption c_{it} , and housing consumption h_{it} , s.t.

$$k_{it} \equiv (1+r)k_{it-1} + w_{\ell_{it}}z_{it} - c_{it} - \rho_{\ell_{it}}h_{it} \ge 0$$

• Receives utility,

$$u_{it} = \frac{\alpha_{\ell_{it}t}^{1-\eta} (c_{it}^{\rho} + \gamma h_{it}^{\rho})^{\frac{1-\eta}{\rho}} - 1}{1-\eta} - D_{\ell_{it-1},\ell_{it}} + \varepsilon_{i\ell_{it}t}$$

- Realizes Markov income type shock $z_{it+1} \sim \Gamma(z_{it})$
- Ages $a_{it+1} = a_{it} + 1$ or receives bequest utility

Household maximizes expected lifetime utility, exponentially discounted at rate β

ntroduction Model	Comparison of Optimizations	Individual Stage Optimizations
1000 000000	0000	00000000

High-Level Solution Decomposition

Let the beginning and end-of-period household value functions and state distributions be,

$$V_t^{\text{start}}: X \to \mathbb{R}, \quad V_t^{\text{end}}: X \to \mathbb{R}, \lambda_t^{\text{start}}: \mathcal{P}(X) \to \mathbb{R}, \quad \lambda_t^{\text{end}}: \mathcal{P}(X) \to \mathbb{R}$$

Computationally, these are just arrays (for today). A solution consists of:

1. An intra-period household's problem solution:

$$\mathcal{H}: (V_t^{\text{end}}, \lambda_t^{\text{start}}, \{\rho_{\ell t}\}_{\ell}, \theta) \mapsto (V_t^{\text{start}}, \lambda_t^{\text{end}}, \text{Moments}_t)$$

2. A set of defining equation functions:

(Market Clearing) \mathcal{E} : (Moments_t, { $H_{\ell t}$ }) \mapsto ExcessDemand_t

(Period Boundaries) $\mathcal{B}: (V_t^{\text{end}}, V_{t+1}^{\text{start}}, \lambda_t^{\text{end}}, \lambda_{t+1}^{\text{start}}) \mapsto B_t$

(Calibration) \mathcal{C} : (Moments_t, DataMoments_t) \mapsto MomentError_t

3. A solver, $\mathcal{S} : (\mathcal{H}, \mathcal{E}, \mathcal{B}, \mathcal{C}) \mapsto (\{V_t^{\text{end}}, V_t^{\text{start}}, \lambda_t^{\text{end}}, \lambda_t^{\text{start}}, \rho_{\ell t}\}_t, \theta)$

I build models by taking these components and composing them.

		Model 000000	Comparison of Optimizations 0000	Individual Stage Optimization 00000000
--	--	-----------------	-------------------------------------	---

Household Problem Decomposition

An intra-period household problem solution (IPHP) is separable into two functions,

 $\mathcal{H}^{\text{back}} : (V_t^{\text{end}}, \{\rho_{\ell t}\}_{\ell}, \theta) \mapsto (V_t^{\text{start}})$ $\mathcal{H}^{\text{forward}} : (V_t^{\text{end}}, \lambda_t^{\text{start}}, \{\rho_{\ell t}\}_{\ell}, \theta) \mapsto (\lambda_t^{\text{end}}, \text{Moments}_t).$

Each can be further decomposed into "stages" which occur in succession:

Choose Location	Each st	age s has
Receive Income		$\mathcal{H}_s^{\text{back}}: (V_{st}^{\text{end}}, \{\rho_{\ell t}\}_{\ell}, \theta) \mapsto (V_{st}^{\text{start}})$
Choose Consumption	0	$\mathcal{H}_{s}^{\text{forward}}: (V_{s-1,t}^{\text{end}}, \lambda_{st}^{\text{start}}, \{\rho_{\ell t}\}_{\ell}, \theta) \mapsto (\lambda_{st}^{\text{end}}, \text{Moments}_{st})$
Income Shock	where	$V_{s-1,t}^{\text{end}} = V_{st}^{\text{start}}$
		$\lambda_{st}^{ ext{start}} = \lambda_{s-1,t}^{ ext{end}}$

Build model from pre-built, optimized stages

ntroduction	Model	Comparison of Optimizations	Individual Stage Optimizations
0000	00000●	0000	000000000

Household Problem Code

```
function solve_period!(prealloc, V_next, params)
        V_preshock = get_V_preshock(prealloc, V_next)
```

```
V_consume = get_V_preconsume(V_preshock, prealloc)
```

V_income = get_V_preincome(V_consume, prealloc, params)
enforce_borrowing_constraint!(V_preincome, prealloc)

V_premove = get_V_premove(V_preincome, prealloc, params)

V_end = YOUR_CODE_HERE(V_premove, prealloc, params)
end

Comparison of Optimizations

Model	Comparison of Optimizations	Individual Stage Optimizations
000000	0000	000000000

Benchmark

- 1000 locations, 129 wealth states, 5 income types, 6 age groups = 3.87m gridpoints
- Single-thread CPU
- Language: Julia
- Strawman: Jeffrey, May 2023
- One evaluation of household problem
- Initial time: 218s (3m38s)

Comparison of Optimizations 0000

Individual Stage Optimizations 000000000

Low-Hanging Fruit

- **Initial**: 218s
- Memory Preallocation: $218s \rightarrow 152s$
- (Almost) Automatic Multithreading: $152s \rightarrow 49s$
- 32 Bit Precision: $49s \rightarrow 31.9s$

Individual Stage Optimizations 000000000

Individual Stage Optimizations

Choose Location	$25.2s \rightarrow 9.78s \rightarrow 0.053s$
Receive Income	$0.38 \mathrm{s} \rightarrow 0.019 \mathrm{s}$
Choose Consumption	$0.498 \mathrm{s} \rightarrow 0.025 \mathrm{s}$
Income Shock	$4.52 s \rightarrow 0.028 s$

Overall: $31.9s \rightarrow 0.353s$ (= 0.126s listed stages + 0.228s other)

Individual Stage Optimizations

Introduction 0000	Model 000000	Comparison of Optimizations 0000	Individual Stage Optimizations 0●0000000	
Choose Location				

Let
$$V_{ts\iota}^{\text{start}}(\ell) = V_{ts}^{\text{start}}(k_{\iota t-1}, z_{\iota t}, \ell, a_{\iota t}), \quad V_{ts\iota}^{\text{end}}(\ell) \text{ similar}$$

where ι indexes all household types up to location.

The i.i.d. Gumbel location preference shocks imply:

$$\exp\left(\psi V_{ts\iota}^{\text{start}}(\ell)\right) = \sum_{\ell'} \exp\left(\psi \left(V_{ts\iota}^{\text{end}}(\ell') - D_{\ell\ell'}\right)\right)$$
$$P(\ell' = \ell_0 \mid \ell) = \frac{\exp\left(\psi \left(V_{ts\iota}^{\text{end}}(\ell') - D_{\ell\ell'}\right)\right)}{\exp\left(\psi V_{ts\iota}^{\text{start}}(\ell)\right)}$$
$$\lambda_{ts\iota}^{\text{end}}(\ell) = \sum_{\ell'} P(\ell' = \ell \mid \ell) \lambda_{ts\iota}^{\text{start}}(\ell')$$

First optimization: Precompute exp $(\psi V_{ts\iota}^{\text{start}}(\ell))$, then $P(\ell' = \ell_0 \mid \ell)$, then $\lambda_{ts\iota}^{\text{end}}(\ell)$ Time: 25.2s \rightarrow 9.78s

$\begin{array}{c} \text{Introduction} \\ \text{0000} \end{array}$	Model	Comparison of Optimizations	Individual Stage Optimizations
	000000	0000	000000000

Choose Location

Second optimization: observe that (with \otimes and \otimes elementwise mult. and div.)

$$\begin{split} \widetilde{V}_{ts}^{\text{start}} &= D\widetilde{V}_{ts}^{\text{end}} \\ \Lambda_{ts}^{\text{end}} &= \widetilde{V}_{ts}^{\text{end}} \otimes (D'\Lambda_{ts}^{\text{start}} \oslash \widetilde{V}_{ts}^{\text{start}}) \\ \text{where matrices} \quad D_{\ell\ell'} &= \exp\left(-\psi D_{\ell\ell'}\right) \\ \left(\widetilde{V}_{ts}^{\text{start}}\right)_{\ell\iota} &= \exp\left(\psi V_{ts\iota}^{\text{start}}(\ell)\right) \\ \left(\widetilde{V}_{ts}^{\text{end}}\right)_{\ell\iota} &= \exp\left(\psi V_{ts\iota}^{\text{end}}(\ell)\right) \\ \left(\Lambda_{ts}^{\text{end}}\right)_{\ell\iota} &= \lambda_{ts\iota}^{\text{end}}(\ell) \end{split}$$

No matter the size of the state space, just two matrix multiplications!

Time: $9.78s \rightarrow 0.053s$

Comparison of Optimizations 0000

The Power of Matrix Multiplication

Why is matrix multiplication 200 faster than an explicit loop?

- Surprising algorithms exist to multiply two matrices in as little as $O(n^{2.371552})$ time
- Most CPUs have specialized hardware for matrix multiplication
- Pretty much exactly the same thing works for CES production functions, etc.
- Similar approach to optimizing income shocks, or any finite-state Markov process

Comparison of Optimizations

Choose Consumption

- Strategy: Gridsearch
- If $MPC \ge 0$, then my optimal saving is between my wealth-neighbors'
- Don't need to search over entire axis!
- By "sharing" information between wealth-neighbors: $O(N^2) \to O(N \log N)$
- Incompatible with vectorization (Python, Matlab) but fast in Julia
- Similar approach for linear interpolation of many gridpoints

Comparison of Optimizations

Outer Loop Optimization

- Currently, takes 396 iterations to solve for prices, using tatonnement. 146s total.
- With autodiff + LBFGS (fancy improvement over Newton's method), hope to get under $\sim 10 \rm s$ for steady state solution

Global Solution

- These "conventional" methods enable the global solution to my JMP model
- Global solution: a solver and boundary conditions equations on $V^{\text{start}}, V^{\text{end}}$ which take the IPHP as given
- A neural network is trained to predict V^{end} . Everything else is conventional
- In particular, no neural network used to approximate policy function

Comparison of Optimizations 0000 Individual Stage Optimizations 0000000000

Next Steps

- Write papers!
- Create ensemble models standard in climate science
- Package up stages and solver modules
- Write some tutorials for users
- Rewrite modules for GPU, cluster platforms

Conclusion

- Attempt to standardize *one* class of model solutions, and pre-write necessary modules
- "Conventional methods" have some life in them yet
- Hard to see how this becomes a paper per se, but already useful to me
- A bunch of "obvious" stuff with non-obvious power
- No one part is super exciting/novel. But their usefulness compounds exponentially