
These are some simple notes about how to use automatic differentiation to
solve an equilibrium model with market power or optimal policy.

The key problem is that naive autodiff is only able to compute partial deriva-
tives, whereas a granular agent’s FOC involves the total derivative, to their
action, of an objective function that is implicitly defined in terms of atomistic
agents’ FOCs and market clearing conditions.

1 Static Case
In the following, almost everything will be implicitly vector-valued. Thus, e.g.,
G will represent a vector of market clearing conditions, A a vector of house-
hold actions,1. ∂G

∂A and dG
dA are the Jacobian of partial and total derivatives,

respectively, of G with respect to the components of A.

1.1 Decomposition of Monopolist’s or Policymaker’s FOC
I outline a case where a granular agent makes a decision that is “quantity-like”
in the sense that it enters directly into the equilibrium (i.e. market-clearing)
conditions, and only indirectly enters into the household’s budget constraint.
This arises, for instance, in Cournot competition. This will look slightly different
in the case where the granular agent’s decison is “price-like”, as in Bertrand
competition, entering directly into the budget constraint and only indirectly
into the

1.1.1 Environment

Suppose you have a model with atomistic agent types i ∈ I, granular agents
(monopolists or policymakers) ℓ ∈ L, and equilibrium variables (typically prices)
pk indexed by k ∈ K. 2 Prices are defined by a vector of market clearing
conditions,

0 = G (A,P,Q)

where A ≡ {ai}i are the actions of atomistic agents, P ≡ {pk}k are equilibrium
variables, and Q ≡ {qℓ}ℓ are the actions of the granular agents.

Agents i differ by beginning-of-period state xi and choose actions ai maxi-
mize utility subject to a budget constraint H,

ai = argmax
a

u (xi, a | Γ, P )

0 = Hi ≡ H (xi, a | Γ, P ) .

Granular agents ℓ choose action qℓ to maximize an objective Πℓ,
1If each household type takes more than one action, then A will be a block vector, with

one block per household type, and within each block, one entry per choice variable.
2Thanks to Lukas Mann for talking this through with me. The format of this first part is

cribbed from his job market paper, though I believe it is fairly standard.

1



Πℓ = Πℓ (Γ, A, P,Q)

Qℓ = max
Qℓ

Hℓ (Γ, A, P, {Q1, . . . , Qℓ, . . . , QL}) .

1.1.2 Granular Agent’s Problem

The granular agent ℓ internalizes the response of atomistic agents and equilib-
rium variables to their action qℓ.3

That is, their FOC is,
dΠℓ

dQℓ
= 0

where the response of A and P are internalized, so that the FOC becomes,

0 = dΠℓ =
∂Πℓ

∂A
dA+

∂Πℓ

∂P
dP +

∂Πℓ

∂qℓ
dQℓ (1)

1.2 Total Differentiation
To get this in terms of partial derivatives, first totally differentiate the market
clearing conditions,

0 = G (A,P,Q)

=
∂G

∂A
dA+

∂G

∂P
dP +

∂G

∂Qℓ
dQℓ. (2)

Next, take the atomistic agent’s FOC,4

0 =
∂u′

∂ai
dai

0 =
∂Hi

∂ai
dai +

∂Hi

∂P
dP +

∂Hi

∂Qℓ
dQℓ.

Stacking ∂Hi

∂ai
and ∂u′

∂ai
into a single invertible matrix ∂H̃i

∂ai
so that, setting

things up so that ∂u
∂P = 0,

0 =
∂H̃i

∂ai
dai +

∂H̃i

∂P
dP +

∂H̃i

∂Qℓ
dQℓ

dai = −

(
∂H̃i

∂ai

)−1(
∂H̃i

∂P
dP +

∂H̃i

∂Qℓ
dQℓ

)
.

3However, they do not internalize the response of other granular agents, as this leads to
suffering. I mutter the words, “Nash equilibrium,” I wave my hands...

4I denote the FOC by u′, so that ∂u′

∂ai
is the second partial derivative.
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Stacking these gives,5

dA = −

(
∂H̃

∂A

)−1(
∂H̃

∂P
dP +

∂H̃

∂Qℓ
dQℓ

)
.

That is, the total effect of the changes in P and Qℓ on the household La-
grangian FOC must be exactly countered by the change in A.

Plugging into (2),

0 = −∂G

∂A

(
∂H̃

∂A

)−1
∂H̃

∂P
dP − ∂G

∂A

(
∂H̃

∂A

)−1
∂H̃

∂Qℓ
dQℓ +

∂G

∂P
dP +

∂G

∂Qℓ
dQℓ

=

∂G

∂A

(
∂H̃

∂A

)−1
∂H̃

∂P
− ∂G

∂P

 dP +

∂G

∂A

(
∂H̃

∂A

)−1
∂H̃

∂Qℓ
− ∂G

∂Qℓ

 dQℓ

dP = −

∂G

∂A

(
∂H̃

∂A

)−1
∂H̃

∂P
− ∂G

∂P

−1∂G

∂A

(
∂H̃

∂A

)−1
∂H̃

∂Qℓ
− ∂G

∂Qℓ

 dQℓ.

(3)

That is, in GE, the GE effect of a change in Qℓ on the equilibrium conditions
G must be zero. Thus, the sum of the direct effect, ∂G

∂X dX, and indirect effect,

−∂G
∂A

(
∂H̃
∂A

)−1
∂H̃
∂X dX, for X = Qℓ must be exactly counteracted by the sum of

effects for X = P .
Finally, plugging back into 1,

0 =
∂Πℓ

∂A
dA+

∂Πℓ

∂P
dP +

∂Πℓ

∂Qℓ
dQℓ

Where dA = −

(
∂H̃

∂A

)−1(
∂H̃

∂P
dP +

∂H̃

∂Qℓ
dQℓ

)

dP = −

∂G

∂A

(
∂H̃

∂A

)−1
∂H̃

∂P
− ∂G

∂P

−1∂G

∂A

(
∂H̃

∂A

)−1
∂H̃

∂Qℓ
− ∂G

∂Qℓ

 dQℓ

(4)

Equation (4) is the granular agent’s FOC.

1.2.1 Interpretation

This looks complicated. This is largely because it is so general, encompassing
any well-behaved static model consisting of atomistic agents, granular agents,

5It might seem like we are blowing up the size of ∂H̃
∂A

by making it one big matrix, when we
know it is block-diagonal. However, Julia allows us to specify that a matrix is block-diagonal,
then acts on it as efficiently as it would on the individual matrices.
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equilibrium variables, and market-clearing conditions. The above expression
nests many special cases quite beautifully, and it may be instructive to see some
such special cases.

Bertrand Competition Suppose that prices do not affect the market clear-
ing conditions directly and granular firms choose some prices. (Prices chosen
by firms are in Q.) Then,

∂G

∂P
=

∂G

∂Qℓ
= 0,

so that Equation (3) becomes,6

0 =
∂Πℓ

∂A
dA+

∂Πℓ

∂P
dP +

∂Πℓ

∂Qℓ
dQℓ

Where dA = −

(
∂H̃

∂A

)−1(
∂H̃

∂P
dP +

∂H̃

∂Qℓ
dQℓ

)

dP = −

∂G

∂A

(
∂H̃

∂A

)−1
∂H̃

∂P

−1∂G

∂A

(
∂H̃

∂A

)−1
∂H̃

∂Qℓ

 dQℓ

Cournot Competition Suppose that firms choose quantities, which enter
into market clearing conditions directly but not into the household budget con-
straint. Also assume that prices P do not enter into the market clearing condi-
tions directly. Then,

∂G

∂P
=

∂H̃

∂Qℓ
= 0,

so that Equation (3) becomes,

0 =
∂Πℓ

∂A
dA+

∂Πℓ

∂P
dP +

∂Πℓ

∂Qℓ
dQℓ

Where dA = −

(
∂H̃

∂A

)−1(
∂H̃

∂P
dP +

∂H̃

∂Qℓ
dQℓ

)

dP = −∂G

∂A

(
∂H̃

∂A

)−1
∂H̃

∂P

−1
∂G

∂Qℓ
dQℓ.

1.3 Automatic Differentiation
Now that we have the granular agent’s FOC in terms of automatically com-
putable partial derivatives, we can compute it automatically. Thus, the full
procedure is:

6The last line below looks suspiciously like the regression projection (X′X)−1X′y. If you
can see the deep connection, please let me know!
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1. Categorize the equations in the model into the categories G,H,Π, u.

2. Use automatic differentiation routines to compute the partial derivative
Jacobians.

(a) If using Julia, remember to type your matrices appropriately in order
to take advantage of sparsity.

3. Plug the Jacobians into (4) to obtain the FOC.

We can even use gradient-based solvers such as (L-)BFGS by automatically
differentiating the FOC! Since it is already in terms of auto-diff-able partial
derivatives, higher order derivatives are easy.
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