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Abstract

Renewable Portfolio Standards (RPS) are a popular class of state-level renewable energy

policies in the United States. I analyze how existing electricity generation markets adjust to the

introduction of RPS policies, and the implications of this adjustment for carbon emissions. I

estimate the effect of RPS policies on total carbon emissions from generation, decomposed into:

(1) change in demand for electricity, (2) changes in the utilization shares of different fuels in

generation, and (3) changes in the carbon intensity of generation by fuel type. I find that, while

RPS policies do increase renewable generation, the carbon implications of this change are small

compared to those of the indirect effects of RPS policies. In particular: decreased quantity

of electricity generated (carbon-negative), increased coal generation relative to natural gas

(carbon-positive), and increased carbon intensity of fuel generation (carbon-positive). These

effects appear to cancel out somewhat, and I do not find a statistically significant net effect of

RPS policies on carbon emissions.

1 Introduction

In recent years, concerns about carbon emissions and climate change have led many state

governments to pass regulations encouraging renewable generation. The most popular of these

are Renewable Portfolio Standards (RPS), versions of which are currently in effect in 31 states

and Washington, DC.

Renewable portfolio standards are a class of policies that encourage renewable generation by

mandating that some proportion α of a state’s energy generation1 come from eligible renewable

sources by a target year t̄. These eligible sources typically only include wind and solar. I refer to

α as the “nominal requirement.” RPS policies enforce this mandate by introducing tradable

Renewable Energy Credits (RECs). An RPS enacted in year t mandates that, each year

beginning with the target year t̄, (generally several years after t) eligible renewable generators

will receive RECs for each MWh of energy produced that year. All generators must then trade

1Or, occasionally, consumption. See next paragraph.
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RECs until each generator owns RECs equal to α times the total quantity of electricity it

generated that year.

I analyze how existing electricity generation markets adjust to the introduction of RPS

policies, and the implications of this adjustment on carbon emissions. I do this by first using

panel data at the state-year level from 1997 to 2013 to estimate the effect of RPS policies on

per capita generation and carbon emissions intensity for each of the following energy sources:

coal, natural gas (“gas”), combined wind and solar, and other. Next, I perform a counterfac-

tual exercise in which I compare all treated states in 2013 with an untreated counterfactual. I

compare the difference in total emissions between the data and the counterfactual, and decom-

pose this difference into: (1) change in total per capita generation, (2) change in the relative

utilization of energy sources in generation, and (3) change in the average carbon intensity of

generation by energy source.

Our estimate of the effect on total emissions is positive but not highly significant. More

interestingly, I find that coal generation tended to increase relative to natural gas in response to

RPS policies, which increases total carbon emissions, and that the carbon emissions intensity

of fuel (coal and gas) generation also tended to increase. However, I also find that total

generation quantities tended to decrease in response to RPS policies, which decreases carbon

emissions. Previous literature suggests that these indirect effects of RPS policies are largely

due to the intermittent nature of wind and solar generation, and the ways in which existing

generation must adjust to accommodate it.2

While an increased renewable share of generation per se reduces emissions, this decompo-

sition suggests that, in terms of its impact on carbon emissions, this effect of RPS policies

is dwarfed by the indirect channels described above. That is: reduction in total generation

quantities (carbon-negative), increased coal share relative to natural gas (carbon-positive),

and increased carbon intensity of fuel generation (carbon-positive). These channels cancel out

somewhat, and I do not find a statistically significant overall effect of RPS policies on total

carbon emissions. However, the errors on this estimate on total carbon emissions is an order of

magnitude larger than the estimated effect of increased renewable share, and the error thereof.

I reiterate that I only estimate the effect of RPS policies on 2013 emissions within the

state that passed the RPS. Thus, I do not take into account effects materializing after 2013,

even though all but eight of the policies I study have target years after 2013. High fixed costs

of entry might also lead to slow adjustment and a delayed materialization of the full effect.

Furthermore, I do not consider these policies’ role in accelerating innovation in renewable

energy, an effect which could catalyze or hasten widespread adoption of renewables. Finally, I

do not consider the effect of RPS policies passed in one state on its surrounding states, though

these effects are likely important.

Section 2 describes existing research on RPS policies. Section 3 describes my data sources

and the construction of the stringency measure. Section 4 discusses emissions and the power

mix. In it I present summary statistics on U.S. power mix, explicitly define the decomposition I

2See Section 4.3
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outline above, and discuss the economics of these channels in relation to RPS policies. Section

5 describes my two-stage empirical approach. Section 6 presents the results of this analysis.

Section 7 concludes.

2 Previous Work

2.1 Renewable Portfolio Standards

Theoretical and simulation-based work on RPS policies have the longest history. Palmer and

Burtraw, 2005 simulate a national RPS and find that it would increase renewable capacity

and energy prices, decrease demand, and that renewables would disproportionately displace

gas over coal. Fischer, 2010 finds that we might expect RPS policies to lower electricity prices

in the short run, but that prices would rise if the policy were sufficiently stringent.

As RPS policies have been enacted, research has begun to study their effects ex post.

They have, to varying degrees, encountered certain empirical challenges. First, RPS policies

are highly heterogeneous in their implementation. Wiser and Bolinger, 2007 describe many

dimensions of RPS heterogeneity, which I discuss in section 3.1.

Second, the adoption of an RPS policy is an endogenous event. Lyon and Yin, 2010

analyze the factors leading states to adopt an RPS, arguing that they are popular because

they are perceived as advancing multiple political goals simultaneously. They also find that

the adoption of an RPS is driven by, inter alia, the left/right political leaning of the state

legislature, low gas generation, and high state solar and wind potential. Thus, the presence of

unobserved pro-renewable trends or policies could be correlated with the adoption of an RPS.

However, in general these findings have the opposite sign from what one would expect if other

carbon-targeting regulations passed in RPS states were driving these findings.

Third, states are heterogeneous in many ways that could affect the impact of an RPS,

including in existing renewable capacity, which is taken into account in the analysis of Yin and

Powers, 2010. States also vary in their solar potential, wind potential, and the size of their

mining and manufacturing sectors. These are taken into account in the analysis of Upton and

Snyder, 2017.

Due in part to these complicating factors, estimates of the effects of a state-level RPS

remain broadly dispersed. Early papers, such as Menz and Vachon, 2006 and Adelaja et

al., 2010 use a cross-sectional approach and a binary variable for the existence of an RPS

and find that renewable development is greater in states with an RPS. Shrimali and Kniefel,

2011 use a panel data approach and differentiate between RPS policies based on their nominal

requirement, finding that RPS policies based on generation do not increase renewable capacity.

Tackling the issue of deeper RPS heterogeneity, Yin and Powers, 2010 develop a measure of

the effective stringency of an RPS. They find that RPS policies do induce an increase in the

renewable share of generation capacity, but only as a function of the shortfall between the

renewable share present when the policy is enacted and the share actually mandated by the
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policy.3 With a binary RPS variable taking no heterogeneity into account, they find no effect

on renewable share. When interacting this binary variable with the nominal requirement of the

RPS, the effect has a positive sign. Also approaching the issue of deeper RPS heterogeneity,

Carley and Miller, 2012 develop a simple, one-dimensional, time-invariant measure of the

stringency of an RPS, which I also adopt. Tackling the issue of state heterogeneity, Upton and

Snyder, 2017 use the method of synthetic controls to generate composite control observations:

linear combinations of actual (non-treated) states into control states that most closely resemble

treated states. Furthermore, they study the effect of RPS policies on renewable generation

and electricity demand and are the first to empirically study the effect of RPS policies on

electricity prices. They also study the effect of RPS policies on state-level carbon emissions

from fuel generation, but do not decompose this effect.

Greenstone and Nath, 2019 study the effect of RPS policies on generation by fuel type and

on emissions, as I do, as well as on total generation. They similarly emphasize that indirect

costs of RPS policies–costs of the adjustments they necessitate in the state’s electricity market–

are the main component of total welfare costs. They do examine the effect of RPS policies on

generation by energy source and overall emissions intensity. However, they stop at estimating

the effect of RPS policies on these quantities, and do not quantitatively analyze the implications

of these estimated effects for carbon emissions, as I do. Neither do they examine emissions

intensity by energy source, a necessary component of the decomposition I estimate. Indeed,

to the best of my knowledge, this study is the first to estimate a decomposition of the effects

of RPS policies on carbon emissions.

2.2 Heterogeneous Externalities by Fuel

A key driver of my analysis is that some fuels are more carbon intensive than others. However,

production of carbon dioxide by combustion is not the only externality associated with using

fuel to generate electricity, even with regard to climate change.

Fuel extraction can have complex and extensive environmental costs. Jenner and Lamadrid,

2013 perform a study of negative externalities of coal and gas generation, such as nitrogen oxide

and sulfur dioxide emissions from coal generation, which contribute to respiratory illnesses and

acid rain; leakage of methane, a greenhouse gas thirty times more potent than CO2, from gas

extraction; and groundwater contamination from shale gas extraction via hydraulic fracturing

(“fracking”). They find that coal has greater negative externalities on public health, worker

safety, local environmental protection, and carbon emissions, but that the relative effect of

coal and gas on total greenhouse gas emissions depends on the rate of methane leakage in

gas extraction. Fuel supply chains are also responsible for carbon emissions through energy

consumption, estimated at 10.5% of generation emissions for coal by Wu et al., 2016.

CO2 emissions are the only externality I directly address. However, my results about the

effects of RPS policies on fuel mix have direct welfare implications whenever externalities of

3For a more detailed discussion of this shortfall measure, see Section 3.1.
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generation differ by fuel type.

3 Data

I perform my primary analysis at the state-year level from 1997 to 2013. I include every

continental U.S. state with nonzero gas and coal generation throughout the sample period,

leaving 46 states.4 I use state-year level data from the Energy Information Administration

(EIA) on total generation and total emissions by energy source. To put variables in per capita

form, I use population estimates from the United States Census Bureau.

3.1 Stringency

RPS policies are highly heterogeneous along a number of dimensions. Wiser and Bolinger, 2007

document that state RPS policies vary in, among other things, the nominal requirement, the

target year, whether they regulate energy production or consumption, whether they permit

RECs to be traded across state lines, which renewable technologies are eligible, penalties

for noncompliance, and exclusions for generators. This final dimension is a complex one.

RPSs often exclude or differentially regulate different classes of generators: investor-owned,

consumer-owned, or publicly-owned; urban or rural; or generators whose annual generation

exceeds a threshold quantity. Some RPSs also exclude specific generators by name.

In order to account for this heterogeneity, some empirical papers have introduced one-

dimensional measures of the stringency of an RPS, where a stringency of zero is equivalent to

the absence of an RPS.

I use a measure of RPS stringency introduced by Carley and Miller, 2012, who compute

this measure from 1997 through 2008. I use the extended set of values computed by Upton

and Snyder, 2017 through 2013. The measure is defined as the annualized increase in the

mandated proportion of renewable generation in a state s and year t, as described in Equation

1.

ASst ≡ annualized stringency = AS(Rst) =
αfinal(Rst)− αstarting(Rst)

yearfinal(Rst)− yearstarting(Rst)
·Coverage(Rst)·100

(1)

Here, Rst refers to the RPS policy in effect in state s in year t. The variable αinitial(Rst) refers

to the nominal requirement in effect prior to the passage of the current RPS Rst. Unless Rst

replaced a preexisting RPS, this value will be zero. The variable αfinal(Rst) refers to the nominal

requirement of Rst. The year that Rst was passed is yearstarting(Rst), and the target year of

Rst is yearfinal(Rst). Finally, Coverage(Rst) refers to the proportion of generation covered by

Rst. Note that all heterogeneity in coverage (due for example to exemptions or differential

requirements for different classes of generators) is thus accounted for in Coverage(Rst).

4Excluded are Alaska, Hawaii, Vermont and Rhode Island.
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This measure can be thought of as a linear interpolation of the RPS mandate between

the start and end year of the policy. In their analysis, Upton and Snyder, 2017 use as their

independent variable the interaction between “annualized stringency” ASst and the number of

years that an RPS has been in effect:

RPSst = t− yearstarting(Rst).

This product variable essentially linearly interpolates the renewable generation requirement of

the RPS between the start and end year of the policy. That is, at the start year, their regressor

is equal to

ASst · RPSst = ASst = 0

and at the target year equal to

ASst · RPSst = (αfinal(Rst)− αstarting(Rst)) · Coverage(Rst) · 100.

I do something very similar, except that I wish to account for preexisting RPS policies and

revisions to policies. I will therefore define a regressor Sst with the property that at the start

year of a policy

Sst = αstarting · Coverage(Rprevious
st ) · 100

and at the end year of a policy

Sst = αfinal · Coverage(Rst) · 100.

I desire the regressor to have the following property: when a policy is revised between its

start year and end year, the current year’s Sst should be unaffected, but the values of Sst

between the current year and end year should linearly interpolate between the current value

and the new value of αfinal · Coverage(Rst) · 100. To achieve these properties, I define this

regressor as follows.

Sst = (interpolated stringency)st =
t∑

τ=−∞
ASsτ . (2)

Because revisions to RPS policies are rare in this panel, this regressor usually matches up

with the regressor of Upton and Snyder, 2017. In cases where it differs, I believe mine to be a

slightly more reasonable reflection of a state’s total exposure to RPS legislation.

The measure of Carley and Miller, 2012, upon which I base this regressor, does not take

into account existing generation. In particular, if a state already fulfills the requirement when

the policy is passed, I would expect it to have no effect. However, this measure would consider

the policy equivalent to an identical policy in a state with preexisting renewable capacity. For

an alternative measure of RPS stringency which does take into account existing generation,

see Yin and Powers, 2010.
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4 Emissions and Power Mix

Total carbon emissions arise as the dot product of total generation by energy source and

average carbon intensity by energy source. Since energy sources vary significantly in their

carbon intensity, the power mix–the relative use of different energy sources in generation–is

a key determinant of total emissions. In this section, I first describe summary statistics of

levels and trends in generation and carbon intensity data by energy source. I then define a

decomposition of a change in net emissions into (1) effects of changes in the total quantity

of electricity generated, (2) effect of changes in the utilization shares of different fuels in

generation, and (3) effects of changes in the carbon intensity of generation by fuel type. Finally,

I describe different mechanisms by which electricity generation markets might respond to RPS

policies, and how these mechanisms might affect carbon emissions through different channels

of the decomposition I define.

4.1 Power Mix: Summary Statistics

Coal and gas together accounted for approximately two-thirds of total U.S. electricity genera-

tion throughout my panel, from 1997 to 2013. Within that two-thirds, gas gradually began to

supplant coal, a trend which continues to the present. The majority of the remaining genera-

tion is nuclear and hydroelectric, whose levels have remained largely stable. Wind and solar

have gained a small foothold in recent years, but levels remained negligible until near the end

of the panel. Figure 1 shows trends in total generation by fuel source and Figure 2 shows

trends in relative utilization. Table 1 reports relative utilization by power source in a few

snapshot years.

While my main analysis will show a positive coefficient on coal generation, new coal capacity

is actually rare. Figure 3 shows newly-activated coal capacity in the U.S.–capacity active in a

given year but inactive the previous year–as a proportion of existing capacity, by year. This

is divided into reactivated capacity–capacity which has been utilized at some point in the

past–and new capacity, which has not. Together, they average just under 0.2% of total coal

capacity per year over 14 years. Our main analysis then largely indicates that RPS policies

cause states’ coal generation to decline more slowly, rather than to actually increase.

The carbon intensities of different fuel types have also been experiencing differing trends.

The average carbon intensity of coal used in electricity generation is higher than gas and

has been stable in the 1000 kg/MWh range. The average carbon intensity of gas trended

downwards from the 620 kg/MWh range to the 470kg/MWh range over the duration of the

panel. The carbon intensity of average U.S. electricity generation, slightly higher, trended

downward from the 650 kg/MWh range to the 550 kg/MWh range throughout the panel.

Annual values are presented graphically in Figure 4.
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4.2 Decomposition

Let q⃗ denote the vector of total electricity generation by energy source (for some region, over

some time period), and let b⃗ denote the vector of average carbon intensities of generation by

energy source. Then total carbon emissions are given by

Total Carbon Emissions = q⃗ · b⃗ = q1b1 + q2b2 + · · ·+ qnbn.

Now suppose that q⃗p and b⃗p refer to generation and carbon intensity if some policy were to

be implemented, and q⃗u, b⃗u to generation and carbon intensity in the absence of such a policy.

Then the net effect of the policy on total carbon emissions is given by

q⃗p · b⃗p − q⃗u · b⃗u.

I wish to decompose this effect.

4.2.1 Coarse Decomposition

I begin by decomposing into three broad channels:

1. Total generation quantity. The effect of a change in total electricity generated.

2. Power mix. The effect of changes in the relative utilization of different energy sources

for generation.

3. Carbon intensity. The effect of changes in average carbon intensitiy of generation by

fuel type.

Let Ci denote the contribution of Channel i. Channel 1 is given by simply scaling total

emissions by the change in total generation, where | · | denotes the sum.

C1 =
|q⃗p|
|q⃗u|

q⃗u · b⃗u − q⃗u · b⃗u

Channel 2 is given as the effect of the change in the vector of quantities q⃗p (while keeping

carbon intensities constant at b⃗u), minus the contribution of Channel 1.

C2 = q⃗p · b⃗u − |q⃗p|
|q⃗u|

q⃗u · b⃗u

Finally, Channel 3 is given by the effect of the change in the vector of carbon intensities,

given the new vector of quantities.

C3 = q⃗p · b⃗p − q⃗p · b⃗u.
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4.2.2 Fine Decomposition

I can also perform a finer decomposition, in which I look at the contribution from changes in

each component of q⃗ and b⃗. That is, total generation and carbon intensity for each energy

source. In my analysis, I divide energy sources into the following four categories: (1) coal, (2)

gas, (3) combined wind and solar, and (4) other (which I signify by c, g, r, and o respectively)

so that

q⃗ = [qc, qg, qr, qo]

and b⃗ = [bc, bg, br, bo] .

Suppose again that the treated and untreated states are (q⃗p, b⃗p) and (q⃗u, b⃗u), respectively,

as before. Channel 1 is still given by

C1 =
|q⃗p|
|q⃗u|

q⃗u · b⃗u − q⃗u · b⃗u.

Channel 2 is decomposed into three subchannels corresponding to the change in wind and

solar generation relative to everything else, the change in “other” generation relative to coal

and gas, and the change in coal generation relative to gas. These subchannels, denoted by

C2r, C2o, and C2c, are given by

C2r =
qpc + qpg + qpo
quc + qug + quo

(quc b
u
c + qug b

u
g + quo b

u
o ) + qprb

u
r − |q⃗p|

|q⃗u|
q⃗u · b⃗u

=
qpc + qpg + qpo
quc + qug + quo

q⃗u · b⃗u − |q⃗p|
|q⃗u|

q⃗u · b⃗u (since bpr = bur = 0)

C2o =
qpc + qpg
quc + qug

(quc b
u
c + qug b

u
g ) + qpob

u
o − qpc + qpg + qpo

quc + qug + quo
q⃗u · b⃗u

C2c = qpc b
u
c + qpgb

u
g − qpc + qpg

quc + qug
(quc b

u
c + qug b

u
g )

Intuitively, for each energy source e, its subchannel is computed by comparing total emissions

computed using a measure of carbon intensities which considers e separately to one which

lumps e together with other energy sources.

Channel 3 is further decomposed into three channels, corresponding to the change in car-

bon intensity of generation using coal, gas, and “other,” respectively.5 These subchannels,

respectively denoted by C3o, C3g, and C3c, are given by

C3o = qpob
p
o − qpob

u
o

C3g = qpgb
p
g − qpgb

u
g

C3c = qpc b
p
c − qpc b

u
c .

5I do not include a subchannel for wind and solar, as these always have zero carbon intensity of generation.
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Thus, the entire difference in carbon emissions between the treated and untreated states is

given by these channels:

q⃗p · b⃗p − q⃗u · b⃗u = C1 + C2 + C3

C2 = C2r + C2o + C2c

C3 = C3o + C3g + C3c.

4.3 Power Mix and Renewable Portfolio Standards

To understand the net effect of RPS policies on carbon emissions, I must look at all of the

channels detailed above. By contrast, previous work has focused on the effect of RPS policies

on renewable generation, essentially only considering only (sub-)Channel C2r. Exceptions to

this are Upton and Snyder, 2017 who consider the effect of RPS policies on prices and total

generation quantities and total emissions; and Greenstone and Nath, 2019, who study the

effect of RPS policies on generation by energy source as well as on total emissions. However,

while they report on the effects of RPS policies on generation by energy source, they do not

quantify the implications of these changes for carbon emissions.

By analyzing the effect of RPS policies on the determinants of carbon emissions, I can gain

insight into how electricity generation markets adapt to RPS policies. Different mechanisms

by which an electricity generation market might adjust to the introduction of an RPS policy

will affect carbon emissions through different channels of this decomposition. Thus, examining

the estimated magnitudes of these channels can provide evidence for or against the existence

of possible adjustment mechanisms. Furthermore, this decomposition allows us to study the

magnitude of these adjustments in terms of their relative effect on carbon emissions. In the

following, I relate the channels I have defined to the market adjustments that may contribute

to them, and the economics of how RPS policies might induce these adjustments.

4.3.1 Channel 1: Total generation quantity

When total generation quantity decreases ceteris paribus, emissions also decrease. The most

likely explanation for a decrease in total generation quantity is an increase in prices caused

by, in broad terms, an inward shift of the supply curve. Indeed, Upton and Snyder, 2017 and

Greenstone and Nath, 2019 find that RPS policies increase retail electricity prices. Econom-

ically, prices likely increase because the adjustments made by the generation market to RPS

policies decrease their efficiency.

4.3.2 Channel 2: Power Mix

Wind and Solar

Channel C2r, the effect of a change in the market share of wind and solar generation, is the

channel that has received the most attention in the literature thus far. Its mechanism is clear
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and direct. An RPS induces cross-subsidization of wind and solar by other energy sources,

decreasing the effective cost of wind and solar generation while increasing the cost of other

generation. This subchannel is the focus of earlier empirical work such as Yin and Powers,

2010 and Nicolini and Tavoni, 2017.

Coal, Gas, and Other

Because different fuel types have different carbon intensities, a change in the relative shares

of coal and gas, for example, affects emissions. Coal, for instance, is approximately twice as

carbon-intensive as gas.

Broadly speaking, the question of how an RPS policy affects relative fuel shares is probably

a matter of substitutability. If coal and gas have similar price elasticities of supply, an RPS

should affect them similarly. Relative changes in their shares, then, are probably the result

of differential substitutability with wind and solar. The RPS increases wind and solar shares,

and whichever energy source is more substitutable with them will experience a greater decline.

At a finer level, this differential substitutability is likely due to the different roles that differ-

ent energy sources play in generation. Some–particularly nuclear, hydroelectric, and coal–are

relatively costly to cycle on and off. These therefore tend to operate continuously as “baseload”

capacity. Other energy sources, such as gas, are more flexible, and often operate only when

needed, as “load-following” or “peak” capacity. Wind and solar generation, unlike fuel sources

of energy, are highly intermittent, their output determined by transient natural conditions. It

is generally accepted (Smith, 2019, Marrero and Ramos-Real, 2010) that intermittent renew-

ables require more residual (i.e. not wind or solar) capacity to be load-following, to take over

when renewables exogenously stop producing.

The question of which energy sources are more or less substitutable with renewables, how-

ever, is still open. For coal and natural gas, for instance, some, such as Marrero and Ramos-

Real, 2010, argue that gas is more substitutable with intermittent renewables than coal is,

while others such as Palmer and Burtraw, 2005 predict via simulation that gas would be dis-

placed more than coal. While I focus on coal and gas shares in this analysis, lumping together

all other sources as “other,” these concerns certainly apply to these “other” sources as well,

and a more complete treatment of how RPS policies affect them is an avenue for future work.

One important thing which I do not take into account is that power mix is largely governed

by investment dynamics and slow adjustment. Large fixed costs of investment in new generat-

ing capacity can cause one type of generation to remain economical to use long past the point

it is not economical to build more of it.6 Due to this, I may significantly underestimate the

effect of RPS policies. If RPS policies act to render new investment in some forms of conven-

tional generation uneconomical, then they could precipitate a slow but long-term decline in

the usage of those energy sources.

6For example, as I describe in Section 4.1, coal generation in the U.S. has been slowly declining for decades, and
new coal capacity is rare. However, coal continues to be widely used for generation, accounting for over a quarter of
electricity generation in 2018.
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4.3.3 Channel 3: Carbon Intensity

When the average carbon intensity of an energy source increases ceteris paribus, total emissions

increase. This change in average carbon intensity, however, might be driven by what might be

termed the “extensive” or the “intensive” margins, i.e., which plants are used for generation

and how those plants are used, respectively.

At the “extensive” margin, within a given energy source, an RPS can affect the composition

of generating capacity by inducing entry or exit. If entering plants are less (more) carbon-

intensive than average, or exiting plants more (less) carbon-intensive than average, then I

would expect entry and exit to decrease (increase) average carbon-intensity. I might expect

older, less efficient plants to generally exit first, while plants that enter use more modern and

cleaner-than-average technologies. That is, I might expect the effect of an RPS through this

“extensive” margin to decrease average carbon intensities.

At the “intensive” margin, an RPS can affect how existing plants operate. Smith, 2019

finds a tendency for coal plants to transition from baseload to load-following operation in

recent years. As I have mentioned, intermittent renewable generation necessitates more load-

following generation in its market. Smith, 2018 finds that baseload plants transitioning to

load-following operation operate less efficiently and with higher carbon intensity. Thus, the

introduction of intermittent renewables may increase the carbon intensity of existing capacity.

If these suppositions hold, then a decrease in carbon intensities of generation associated

with RPS policies provides suggestive evidence that the “extensive” margin effect is larger,

while an increase in carbon intensities suggest that the “intensive” margin effect is larger, in

terms of its effect on carbon emissions.

5 Methodology

5.1 First Stage

I use the data described in Section 3 to estimate the following difference-in-differences model.

yst = δ1Sst + δ2S
2
st + αs + αt + εst (3)

Here, yst is the endogenous variable of interest, αs and αt are state and time fixed effects

respectively, εst is an error term, Sst is the “interpolated stringency” as described in Equation

2 of Section 3.1, reproduced below, and S2
st is the square of Sst.

Sst = (interpolated stringency)st =
t∑

τ=−∞
ASsτ . (2)

I use panel data on 46 states between 1997 and 2013. The model is estimated via weighted

least squares (WLS) weighting by total generation in each state-year. Standard errors are

computed via bootstrap at the state level. The bootstrap procedure is as follows: I split
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the panel of 46 states into a set of 46 time series, one per state. I then select from that set

of time series 46 times, with replacement. I then reintegrate this sample of 46 states into

a panel, and re-run the analysis on this panel, generating a new set of estimates. I repeat

this process 2000 times, yielding 2000 estimates for each parameter. For each parameter, I

obtain standard errors as the sample standard deviation of the bootstrap estimates, p-values

as the proportion of bootstrap estimates with the opposite sign as the main estimate. The

use of a full set of year and state dummies supercedes any strictly time-based or state-based

controls, such as business cycle controls or any dimension of state heterogeneity. The use of

the bootstrap standard error also means that serial correlation between regressors will not lead

to inaccurately precise results.

The endogenous variables of interest I examine are per capita generation (MWh per capita)

and average carbon intensity of generation (kg/kWh) for each of the following: coal, gas,

combined wind and solar, and other.

5.2 Second Stage

I use the estimates from the first stage to generate counterfactual data for generation and

carbon intensity in 2013, had no RPS policies been passed. That is, for each state s with

an RPS, having obtained estimates in the first stage for the determinants of the endogenous

variable,

yst = δ̂1Sst + δ̂2S
2
st + α̂s + α̂t + ε̂st,

I compute the counterfactual variable as

ȳst = α̂s + α̂t + ε̂st, (4)

representing the counterfactual values for what per capita generation and average carbon

intensity would have been had no RPS policies been passed, by energy source. I multiply per

capita generation by state population to obtain total generation by energy source, giving the

vectors of total generation and average carbon intensity by energy source for both observed

and counterfactual data, (q⃗p, b⃗p) and (q⃗u, b⃗u), as described in Section 4.2.

I then decompose the difference between total counterfactual and observed emissions in

2013, as described in Section 4.2. I first perform a coarse decomposition into the three channels

(C1, C2, C3), then further decompose C2 into subchannels (C2r, C2o, C2c) and decompose C3

into subchannels (C3o, C3g, C3c).

To obtain p-values and bounds on the Ci variables, I generate bootstrap panels exactly as

in the first stage. For each bootstrap panel, I re-estimate each Ci variable. 95% confidence

intervals are given as the range between the 2.5% and 97.5% quantiles of the bootstrap esti-

mates, and p-values are given as the proportion of bootstrap estimates with the opposite sign

as the main estimate.
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6 Results

6.1 First Stage

Our results are summarized in Tables 2 and 3. The coefficient on Sst can be interpreted as

the linear component of the difference between the observed value of the endogenous variable,

and the value that it would have taken if the interpolated stringency Sst was 1pp weaker in

year t. Similarly, the coefficient S2
st refers to the quadratic component of that effect.

I grant that the construction of Sst and the inclusion of the squared term make the inter-

pretation of these coefficients somewhat opaque. Therefore, to give a sense of the magnitude

of these effects, in Table 4 I present the estimates of the combined effect of all pre-2013 RPS

policies on total generation and average carbon intensity across all 26 treated states in 2013,

by energy source. That is, for each of these aggregate quantities, I report its observed value

and the counterfactual value computed by setting Sst = 0 as described in Equation 4.

The most statistically significant effect is a decrease in gas generation, corresponding to

a 29% decrease from the counterfactual in treated states in 2013. The estimated effect on

combined wind and solar generation is large but only significant at the p < .11 level, cor-

responding to a 40% increase over the counterfactual in treated states in 2013. When the

endogenous variable is carbon intensity, for both coal and gas the signs on Sst and S2
st do not

match. However, the positive effect is in each case the larger and more statistically significant

one (although significance is still low in either case). Indeed, in each case I estimate the RPS

to have caused an increase in average carbon intensity, in treated states in 2013, of 8% in the

case of coal and 36% in the case of gas.

6.2 Second Stage

I decompose the effect of the RPS policy on total emissions in treated states in 2013, as

described in Section 4.2. First, I perform a decomposition into three channels: total generation

quantity (C1), power mix (C2), and carbon intensity (C3). I report results numerically in Table

5 and graphically in Figure 5. In Table 5, I report the decomposition both in absolute terms,

and as a percent of total emissions in treated states in 2013.

I estimate that RPS policies led to a decrease in total quantity of electricity generation,

but an increase in emissions through both the power mix and carbon intensity channels. The

estimate for the carbon intensity channel C3, however, is larger and much more statistically

significant. With p < .11, I estimate that the net effect of the policies was to increase carbon

emissions.

Second, I perform a further decomposition of the power mix channel C2 into the effects

of changes in wind and solar generation (C2r), other generation (C2o), and coal generation

relative to gas (C2c). I report results numerically in Table 6 and graphically in Figure 6. I

find that, within the power mix channel (C2), the usually-emphasized channel of increased

renewable share (C2r) is dominated by the effect of an increase in coal generation relative to
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gas (C2c). The latter estimated carbon-positive effect C2c, is highly significant and an order of

magnitude greater than the estimated carbon-negative effect, and error thereof, of a relative

increase in wind and solar generation (C2r). Nevertheless, I do find a small but statistically

significant carbon-negative effect of a relative increase in wind and solar generation.

Finally, I perform a further decomposition of the carbon intensity channel C3 into the

effects of changes in carbon intensity of generation using “other” sources (C3o), gas (C3g), and

coal (C3c). I report results numerically in Table 7 and graphically in Figure 7. I find that

the estimated effect of an increase in carbon intensity of gas generation (C3g), is large and

carbon-positive, with p < .05. I also find that the effect of an increase in carbon intensity of

coal generation (C3c) is carbon-positive, and about half the magnitude of C3g.

Figure 8 shows the full decomposition into seven channels. The largest components are C2c

and C3g, although demand reduction, C1, reduced relative use of “other” generation, C2o, and

increased carbon intensity of coal generation, C3c, could also play a significant role.

7 Conclusion

Broadly speaking I find that, when looking at the carbon abatement effect of RPS policies, the

channel of increased renewable generation is almost negligible compared to other channels, in

particular: decreased total generation, increased coal generation relative to gas, and increased

carbon intensity of fuel generation. Although balanced out to some degree by reduced quantity

of generation, the overall effect of RPS policies on treated states in 2013 is likely carbon-

positive.

Our finding that RPS policies likely reduce quantities demanded is in line with recent

literature such as Greenstone and Nath, 2019 and Upton and Snyder, 2017, who find that RPS

policies increase electricity prices and decrease quantities. Our inability to find a statistically

significant net effect of RPS policies on emissions is also in line with these two papers, who do

find a small or statistically insignificant such effect. However, a decomposition of this apparent

non-effect reveals that it arises as the combination of more clearly signed components that

cancel out somewhat.

I find that RPS policies likely increase coal generation relative to natural gas generation.

This favors the prediction of Palmer and Burtraw, 2005–that intermittent renewables are more

substitutable with gas than they are with coal–over the prediction of Marrero and Ramos-

Real, 2010 that the opposite is true. If these findings are true, than this carbon-gas power

mix channel is much larger than the direct effect of increasing renewable generation, and could

make the net effect of RPS policies carbon positive.

I also find that RPS policies may cause the carbon intensity of fuel generation to increase

significantly. This is consistent with Smith, 2018, who finds that increased renewable shares

cause fuel generation to switch from baseload to load-following operation, and that this makes

them more carbon-intensive. I discuss next steps necessary to further understand this phe-

nomenon below.
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What these results make clear is that, in terms of carbon abatement, the indirect effects

of an RPS policy on a state’s electricity generation market are apparently much larger than

what might be viewed as the direct effect: an increase in renewable generation. While a

deeper understanding of the substitutability of different sources of energy and the dynamics of

investment in generation capacity are beyond the scope of this paper, these results nevertheless

suggest that to understand the net effect of RPS policies on carbon emissions, I must widen

my view from renewable generation per se.

Nevertheless, these results are contingent on my empirical design, which is far from ideal.

The stringency measure that I use does not account for renewable capacity that exists when

an RPS policy is passed. Thus, if identical RPS policies are imposed on states with different

preexisting stocks of renewable capacity, this measure assigns them the same stringency. Of

course, I would expect the state with more preexisting renewable capacity to be affected less.

As studied in Lyon and Yin, 2010, the passage of an RPS policy is a highly endogenous

event, depending on state political climate, wind and solar potential, and the relative power of

different interest groups. Upton and Snyder, 2017, for example, control for political climate,

the size of the state’s mining and manufacturing sectors, and wind and solar potential. I control

for none of these things, putting the magnitudes of these estimates in question. However, if I

suspected that RPS policies were being introduced in states that were already trending toward

lower emissions, I would expect the opposite sign on the coal generation and carbon intensity

channels I estimate, ruling that particular story out as a driving factor.

I study the within-state effects of RPS policies and, in the decomposition, attempt to

measure these effects as manifested in 2013. However, whereas a theme of this paper is the

need for a broader scope in accounting for an RPS policy’s overall effects, the analysis is still in

many ways too narrow. For instance, I do not capture cross-state, global, and long-term/future

effects of RPS policies.

Electricity markets cross state lines, and RPS policies and increased renewable generation

in one state certainly affects states with which it shares a border. It is conceivable, for instance,

that RPS policies induce planned renewable projects out-of-state to simply relocate in-state,

having in these cases zero net effect. Similarly, it is also possible that RPS policies also cause

in-state fuel generation to relocate out-of-state, although measured increases in retail electricity

prices (Upton and Snyder, 2017, Greenstone and Nath, 2019) seem to indicate that generation

quantities actually do go down.

I also fail to account for global or public-good externalities of renewable investment, such as

induced technical change or proof of viability. Increasing demand for renewables incentivizes

innovation in renewables. Also, inducing increased renewable generation in markets forces

generators to learn how to most efficiently adapt: lessons which could be used to introduce

renewables more efficiently in the future. The creation of these intellectual public goods may

dwarf even the large indirect effects I estimate.

I emphasize also that I can only report on the effects of RPS policies as manifested in
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2013, and that the panel usually only includes a few years after an RPS was introduced.7 It is

possible that RPS policies only start to have an effect close to their target years, in which case

we would not observe most of them.8 It is also possible that, in their early years, RPS policies

lay the groundwork for deeper long-term structural change which we cannot see. For example,

as I argue in Section 4.3.2, the slow decline of coal generation over decades and dearth of new

coal capacity suggest that generation continues to operate long past the point when it has

been made “obsolete,” in the sense that it is no longer economical to build more of it.

Some of these findings are intriguing seem deserving of deeper analysis. For one, I do

not examine the nature of changes in average carbon intensities. Do individual generators

increase their carbon intensities–the “intensive” margin–or is the change driven by entry of

more carbon-intensive generators and exit of less carbon-intensive ones? If we believe that

entering generators are unlikely to be more carbon-intensive than average, and exiting gener-

ators unlikely to be less, then the “intensive” margin story seems more plausible. Answering

this question with actual data is the next step toward understanding the carbon intensivity

channel.

Though my main analysis consists of a decomposition of changes to carbon emissions,

this approach could in principle be applied to any externality of generation that varies by

energy source.9 A full cost-benefit analysis of RPS policies should consider a larger set of the

externalities of generation.

For simplicity, I grouped together all generation except for wind, solar, coal, and natural

gas as “other.” Our summary statistics show that this mostly consists of hydroelectric and

nuclear. I find that the net effect of RPS policies on “other” generation, and the carbon

intensity thereof, is of indeterminate sign. A further disaggregation of this quantity, even just

into renewable and non-renewable components, would be informative, as could a treatment of

wind and solar generation separately.

Finally, aforementioned factors such as cross-state effects, investment dynamics, and com-

plex patterns of substitutability, not only by fuel type but also geographically, suggest that

any reduced-form approach to the question of how RPS policies affect electricity markets and

carbon emissions will ultimately be inadequate. In the data, I observe equilibria of the electric-

ity market, but in my analysis I do not model these as explicitly arising as equilibria, instead

making strong assumptions about the reduced-form effects of these policies. A model built

around the understanding of observed data as equilibria, in other words a structural model, is

essential to credibly predicting counterfactual effects of RPS policies, or their absence. That

is, such a model is essential to predicting what other equilibria could prevail.

While it is good for renewable capacity to increase ceteris paribus, carbon abatement only

occurs when traditional fuel generation, or the carbon intensity thereof, decreases. In eval-

uating RPS policies, therefore, it is insufficient to score them by their effect on renewable

generation. Indeed, it is possible for a policy to increase renewable generation, and even

7The median RPS in the panel is 7.5 years old in 2013.
8All but eight of the RPS policies in the panel have target years after 2013.
9Examples of such externalities are listed in Section 2.2.
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to decrease non-renewable generation, while having no significant abating effect on carbon

emissions. Our results suggest that this may not be far from the truth.
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Appendix: Figures

Figure 1: Total U.S. Power Generation By Source

Table 1: Snapshots of U.S. Power Mix

Share of Total U.S. Generation (%)

Year Coal Gas Nuclear Hydroelectric Wind Solar Other

1997 52.8 13.7 18.0 10.2 0.094 0.015 5.14

2003 50.8 16.7 19.7 7.10 0.29 0.014 5.36

2007 48.5 21.6 19.4 5.95 0.83 0.015 3.72

2013 38.9 27.7 19.4 6.61 4.13 0.22 3.31

2018 27.5 35.2 19.4 7.01 6.54 1.53 4.41
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Figure 2: Total U.S. Power Generation By Source (% of Total)
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Figure 3: U.S. New and Reactivated Coal Capacity (% of Total Coal Capacity)
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Figure 4: Average Carbon Intensity of U.S. Electricity Generation by Source
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Table 2: Per Capita Generation by Energy Source (MWh per capita)

Coal Gas Wind+Solar Other

Sst

0.935

(1.468)

p <.27

−3.33∗∗

(1.538)

p <.012

0.460

(0.409)

p <.11

0.337

(1.133)

p <.31

S2
st

9.38× 10−4

(2.05× 10−3)

p <.27

1.72× 10−3

(1.80× 10−3)

p <.15

−2.20× 10−4

(6.96× 10−4)

p <.27

−8.57× 10−4∗

(9.03× 10−4)

p <.09

Effect of an increase of 1pp in Sst (1pp
2 in Sst) on per capita generation

by energy source. Estimated via WLS weighted by total state generation.

Standard errors by bootstrap at the state level. *, **, and *** refer to

significance at the 10%, 5%, and 1% levels.

Table 3: Average Carbon Intensity by Energy Source (kg/kWh)

Coal Gas Other

Sst

−4.15× 10−5

(1.65× 10−4)

p <.35

2.20× 10−4

(2.12× 10−4)

p <.17

7.77× 10−5

(9.87× 10−5)

p <.31

S2
st

2.73× 10−7

(1.82× 10−7)

p <.104

−5.79× 10−9

(1.82× 10−7)

p <.53

−9.06× 10−8

(1.03× 10−7)

p <.24

Effect of an increase of 1pp in Sst (1pp
2 in Sst) on average carbon intensity

by energy source. Estimated via WLS weighted by total state generation.

Standard errors by bootstrap at the state level. *, **, and *** refer to

significance at the 10%, 5%, and 1% levels.
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Table 4: Observed Data and Counterfactual in Treated States, 2013

Total Generation

(Million MWh)

Average Carbon

Intensity (kg/kWh)

Coal Gas Wind+Solar Other Coal Gas Other

Data 899.0 698.0 108.1 798.7 1.146 0.476 0.053

Counterfactual 779.3 985.8 77.4 834.0 1.061 0.350 0.047

Difference 119.7 -287.8 30.67 -35.3 0.085 0.126 0.006

Combined effect of all extant RPS policies on total generation and average carbon

intensity, by energy source, across all 26 treated states in 2013. “Data” refers to values

observed in the data, “Counterfactual” to values constructed as described in Section 5.
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Figure 5: Coarse Decomposition of RPS Effect

Table 5: Coarse Decomposition

Absolute Size (Billion Tons) Share of Total (%)

Estimate 95% CI p value Estimate 95% CI

C1 (tot. gen. quantity) -49.13 [-155.08, 35.59] .1175 -3.92 [-12.37, 2.84]

C2 (power mix) 67.18 [-50.02, 160.52] .1155 5.36 [-3.99, 12.81]

C3 (carbon intensity) 151.23 [4.61, 373.77] .0175 12.06 [0.37, 29.82]

Total 173.37 [-77.08, 420.50] .107 13.83 [-6.15, 33.55]

Decomposition of combined effect of all extant RPS policies on total emissions across all 26

treated states in 2013, as described in Section 4.2. “Absolute Size” refers to the absolute size

of the channel. “Share of Total” is the size of the channel divided by total 2013 emissions

in the treated states.
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Figure 6: Further Decomposition of Channel C2

Table 6: Further Decomposition of Power Mix Channel C2

Absolute Size (Billion Tons) Share of Total (%)

Estimate 95% CI p value Estimate 95% CI

C2r (wind+solar share) -11.23 [-28.96, -3.63] .0015 -0.90 [-2.31, -0.29]

C2o (other share) -15.36 [-113.38, 49.33] .36 -1.22 [-9.04, 3.94]

C2c (coal vs. gas share) 93.77 [17.78, 173.11] .0095 7.48 [1.42, 13.81]

Decomposition of C2 into the effect of changes in generation shares by energy source, as

described in Section 4.2. “Absolute Size” refers to the absolute size of the channel.

“Share of Total” is the size of the channel divided by total 2013 emissions in the treated states.
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Figure 7: Further Decomposition of Channel C3

Table 7: Further Decomposition of Carbon Intensity Channel C3

Absolute Size (Billion Tons) Share of Total (%)

Estimate 95% CI p value Estimate 95% CI

C3o (“other”) 4.10 [-64.53, 20.32] .50 0.33 [-5.15, 1.62]

C3g (gas) 103.04 [-3.80, 294.85] .034 8.22 [-0.30, 23.52]

C3c (coal) 48.18 [-13.13, 127.82] .094 3.84 [-1.05, 10.20]

Decomposition of C3 into the effect of changes in average carbon intensity by energy source,

as described in Section 4.2. “Absolute Size” refers to the absolute size of the channel.

“Share of Total” is the size of the channel divided by total 2013 emissions in the treated states.
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Figure 8: Full Decomposition of RPS Effect
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