
Continuation Value Is All You Need:

A Deep Learning Method for Solving Heterogeneous-Agent Models

with Aggregate Uncertainty

[Click here for latest version]

Jeffrey E. Sun

November 29, 2023

Abstract

I present a deep-learning method for solving discrete-time dynamic heterogeneous-agent (HA) models

with aggregate uncertainty. I also present some neural-network-free techniques for greatly improving

solution times of discrete-time dynamic HA models generally. I start by separating the global solution

problem into two problems: the intra-period household’s problem (and equilibrium price determination),

given the continuation value function; and the problem of finding conditional continuation values given

the current aggregate state. These two problems can be solved separately; the solution to each is general

to the details of the other. The household’s problem solution is “conventional,” not using neural networks

but using specialized algorithms to overcome performance bottlenecks. The continuation value solution

uses deep learning but avoids the need to train a policy function approximator.

This is a work in progress. It is mostly identical to the computational appendix of my job market

paper. It makes specific reference to its particular model and applies some optimizations tailored to it.

1

https://jeffreyesun.com/CV_is_all_you_need.pdf


1 Introduction

This method exploits the fact that if we know the current utility and continuation value resulting from

every action in a household’s choice set, then we can typically solve for the household’s optimal choice,

even under conditions of aggregate uncertainty. Existing deep learning techniques typically use a neural

network to approximate both the policy function and the value function. This requires techniques to train

the policy function approximator which are generally less robust than the training of the value function.

Approximating the policy function with a neural network also imposes constraints such as, commonly, the

differentiability of the continuation value with respect to the policy variable. Aided by optimized algorithms

I develop to quickly solve for optimal household choices, I show that solving for the optimal policy “online”

during training is a viable—and indeed more flexible and arguably simpler—alternative to approximating the

policy function using a neural network. A relatively inexpensive restriction is that prices are pinned down

by intratemporal market clearing conditions given household conditional continuation values. In principle,

prices can also be solved “online,” but in practice I use an auxiliary neural network to approximate prices,

as in Azinovic et al. (2022). I use this method to solve the heterogeneous-agent dynamic spatial model with

aggregate uncertainty in my job market paper.

2 Computational Method

For a large class of discrete-time heterogeneous-agent models with idiosyncratic household states x ∈ X and

(possibly time-varying) aggregate state Γ, the global solution can be expressed by two systems of equations.

First, the beginning-of-period value function is equal to the maximum obtainable combination of utility and

expected time-discounted end-of-period value,

V start(x; Γ) = max
a

u(a; Γ) + Ex′
[
βV end(x′; Γ) | x, a,Γ

]
(1)

s.t. a ∈ A(x; Γ),

where the household can influence utility and its end-of-period state x′ through the use of a (possibly vector-

valued) choice variable a chosen from a feasible set A(x; Γ).

Second, the end-of-period value function, or “continuation value” function, is equal to the expected value

of the start-of-period value function in the following period, after the realization of the aggregate shock:

V end(x; Γ) = EΓ′
[
V start(x; Γ′) | Γ

]
. (2)

I refer to (1) as the “intra-period household’s problem” and (2) as the “continuation value equation.”

2



I divide the problem of finding the global solution into two parts corresponding to these two systems of

equations. While the intra-period household’s problem is a solved problem in the sense that various methods

exist to solve it, I both highly optimize and modularize the solution method by breaking a single period

into a sequence of “stages” and solving each stage separately. This provides high-performance, modular

code which can be easily looped over or recombined to solve a wide variety of models. I do not use neural

networks at all to solve the intra-period household’s problem, obviating the need to use neural networks to

approximate policy functions.

To solve the continuation value equation, I use a neural network to approximate the continuation value

function and train it using a simple supervised learning algorithm. The deep learning algorithm takes the

solution to the intra-period household’s problem as given, eliminating the need to specialize the deep learning

algorithm to the details of the household’s problem.

By dividing the problem into two parts in this way, I can develop algorithms for each part of the problem

that are both highly optimized and general. Furthermore, I can use neural networks as little as possible,

only where they are needed and well-suited. This reduces room for error in the model solution and allows

for greater generality in the household’s problem.

Section 2.1 describes the solution method in a stationary steady state. Section 2.2 describes the solution

method when aggregate variables might be changing, but do so in a perfectly-foreseen way, without aggregate

uncertainty. Section 2.3 describes how to use neural networks to incorporate aggregate uncertainty. Section

2.4 describes a proposal for the general use of these techniques in more challenging models where aggregate

uncertainty persists forever and there is a nontrivial ergodic distribution.

2.1 Solving Discrete-Time Heterogeneous-Agent Models in Stationary Steady

State

The model I describe in my job market paper has a relatively large number of model features (frictions,

household choices, etc.). The majority of this complexity is in the household problem. In this section, let us

consider the stationary steady state of the full model, in which emissions are equal to zero, et = 0 ∀t, and

the economy has converged to stationary steady state.

In the stationary steady state, equilibrium quantities (housing prices, rents, and stocks) are fixed over

time. The stationary steady state can be solved by first solving the household’s problem given equilibrium

quantities, then, in an outer loop, solving for equilibrium quantities to satisfy market-clearing conditions.

3



Algorithm 1 Stationary Steady State Outer Loop

1. Guess housing prices and rents for each location

2. Solve household problem for all households

3. Compute market clearing conditions

4. Update housing price and rent guesses and repeat until convergence

2.1.1 Solving the Household’s Problem

In the stationary steady state, while household value functions do not depend on time, the household’s

problem is still quite complex. The household’s idiosyncratic transition each period has many elements:

choosing location, choosing housing investment, paying realtor’s fees, etc. I break this complexity into

manageable pieces by treat these elements as occuring one at a time and solve for each one independently.

That is, I treat a period of the household’s problem as consisting of several stages, where the idiosyncratic

transition happening in each stage is simple and manageable.

This leverages a useful property of discrete-time models. While, in a continuous-time model, all stages

(elements of the household’s idiosyncratic transition) are happening “simultaneously,” in a discrete time

model they can happen one at a time.

Intuitively, each stage of the household’s problem consists of one thing happening to a household or

one choice made by the household. We can then backwards induct through each stage in a period to solve

the household’s problem. Crucially, because these stages happen sequentially, the computation time needed

to solve the household’s problem is linear in the number of stages (but still exponential in the number of

idiosyncratic state variables). In principle, this allows us to solve household’s problems with arbitrarily

many elements in the household’s transition, as long as the number of idiosyncratic state variables remains

manageable. I provide self-contained code implementing each stage, so that stages can be added, removed,

and reordered at virtually zero cost of programmer time.1

I now formally define a “stage” and the way in which stages can be computationally approximated in

a uniform, composable way. The formalism is a little abstract, but the basic idea is simple: each stage

represents a simple household transition. For each stage, a Bellman equation implies a backwards induction

function taking continuation values to beginning-of-stage values. The purpose of the abstraction is to show

that every element of the household’s problem can be represented in a unified way by the same general

abstract structure that is amenable to computation.2

1These “stage functions” could even be written by different researchers and combined to easy program a large variety of
models.

2This is true in my model but certainly not over the space of all possible models, and in fact relies on the property that

4



2.1.2 Decomposing a Complex Idiosyncratic Decomposition into Stages

Consider one element of the household’s idiosyncratic transition, such as the arrival of income, the consumption-

savings decision, or the application of a borrowing constraint. Assume that the

Definition 1. Stage. A stage S =
(
Xpre,Xpost,Ξ,Π

)
consists of a beginning-of-stage household state space

Xpre, an end-of-stage household state space Xpost, a “backward induction operator” taking an end-of-period

continuation value function V post to a beginning-of-period value function V pre,

Ξ : RXpost

−→ RXpre

: V post 7→ V pre

:
(
V post : Xpost → R

)
7→ (V pre : Xpre → R) ,

and a “forward simulation operator” taking a beginning-of-stage household distribution λpre and an end-of-

stage value function V post to an end-of-stage household distribution λpost,

Π : Λ (Xpre)× RXpost

−→ Λ
(
Xpost

)
:
(
λpre, V post

)
7→ λpost

:
((
λpre : P

(
Xpost

)
→ R+

)
,
(
V post : Xpost → R

))
7→

(
λpost : P

(
Xpost

)
→ R+

)
,

where Λ(X) is the space of measures λ : P(X) → R+ on X.

Alternatively, we can think of a stage as a single operator iterating V post backwards and λpre forwards:

S : Λ (Xpre)× RXpost

−→ Λ
(
Xpost

)
× RXpre

:
(
λpre, V post

)
7→

(
λpost, V pre

)
.

Furthermore, we can compose two stages to form a composite stage.3

Definition 2. Composition of Stages. Let S1 =
(
Xpre

1 ,Xpost
1 ,Ξ1,Π1

)
and S2 =

(
Xpre

2 ,Xpost
2 ,Ξ2,Π2

)
be

household decisions do not interact with each other except through prices. There is some analogy here to the increasingly-popular
mean-field-game approach.

3This composition rule is associative and there is a natural “identity” stage on any state space X which changes neither V
nor λ. It might be of some conceptual interest to note that we can therefore define a mathematical category Stage with the
stages as the morphisms and the state spaces as the objects.

5



two stages. Their composition S12 = S1 ◦ S2 =
(
Xpre

1 ,Xpost
2 ,Ξ12,Π12

)
is a stage given by,

Ξ12 ≡ Ξ1 ◦ Ξ2 : RXpost
2 −→ RXpre

1

Π12 : Λ (Xpre
1 )× RXpost

2 −→ Λ
(
Xpost

2

)
Π12

(
λpre
1 , V post

2

)
= Π2

(
Π1

(
λpre
1 ,Ξ2

(
V post
2

))
, V post

2

)
.

Thus, an entire period can be thought of as a single stage. The purpose of this, however, is to decompose

periods into the simplest possible stages.

This level of abstraction might seem unnecessary. but the essential point is that, for each stage, all we

need to do is map a value function backwards and map a household distribution forwards. In particular, we

can make these stages individually very simple and then compose stages to define complex models. We can

solve those models by composing the numerical approximations of each stage.

To make things more concrete, I describe how one period of the household problem of a simple Aiyagari

model can be subdivided into five stages: receiving income, the consumption-savings decision, the application

of a borrowing constraint, an idiosyncratic income shock, and the passage of time.

For each example stage, let an individual household’s beginning-of-stage state be given by

x = (b, z) ∈ X = Xpre = Xpost,

where b represents the household’s bondholdings and z represents the household’s income. The beginning-of-

period state spaceXpre and end-of-period state spaceXpost are equal. Let the end-of-state continuation value

function be given by V post,s (b, z) for s ∈ {income, consume,constraint,shock,time}.4 To save on notation, I

omit the stage-specific superscript within each example.

Example 1. Receiving Income.

Suppose that after receiving income, a household with initial state (b, z) has continuation state (Rb+ z, z).

The household’s backward induction operator is given by,

ΞincomeV post (Rb, z) = V post (Rb+ z, z) ,

and the forward simulation operator is given by,

Πincomeλpre (T ⊆ X) = λpre ({(Rb, z) | (Rb+ z, z) ∈ T}) .
4I abuse notation somewhat in not writing V post,s ((b, z)).

6



A similar thing is true for any deterministic household transition f : Xpre → Xpost.5

Example 2. Consumption-Savings Decision.

Suppose that a household with initial state (b, z) chooses continuation state (b′, z) maximizing

ΞconsumptionV post (b, z) = u (b′∗ − b) + V post (b′∗, z)

where b′∗
(
b, z;V post

)
≡ argmax

b′
u (b′∗ − b) + V post (b′∗, z)

This defines the backward induction operator of a consumption-savings decision stage.6 The forward

simulation operator is given by

Πconsumptionλpre
(
T ⊆ X;V post

)
= λpre

({
(b, z) |

(
b′∗

(
b, z;V post

)
, z
)
∈ T

})
.

Example 3. Borrowing Constraint.

Suppose that a household is subject to the borrowing constraint b ≥ 0. We can then define a borrowing-

constraint stage by,

ΞconstraintV post (b, z) =


V post (b, z) b ≥ 0

−∞ b < 0

Πconstraintλpre = λpre.

Example 4. Idiosyncratic Income Shock.

Suppose that a household’s income z evolves according to

z′ ∼ D (z)

for some distribution D. Then the idiosyncratic income shock stage is given by,

ΞshockV post (b, z) = Ez′
[
V post (b, z′) | z

]
Πshockλpre

(
T ;V post

)
=

∫
(b,z)

P ((b, z′) ∈ T | z) dλpre

where T ⊆ X.

Example 5. Passage of Time.

5Specifically, for any such f , the backward induction operator is just the pullback or precomposition of V post by f and the
forward simulation operator is the pullback of λpre by the inverse image map f−1 : P

(
Xpost

)
→ P (Xpre) associated with f .

6Note that b′ is fully unconstrained here, and there is no time-discounting; these will occur in different stages.

7



Suppose that time passes between the beginning and end of the stage, with discount factor β. Then, the

passage-of-time phase is given by,

ΞtimeV post (b, z) = βV post (b, z)

Πtimeλpre = λpre.

At this point, this might well seem like a great deal of formalism with no interesting content. The

purpose of this all, however, is just to show that solving a model with a complex household transition is not

especially difficult, as long as we can break the period into stages and numerically approximate each stage.

For example, the full list of stages in my full model are:

• Apply impact of house price changes on household net worth.

• Decide whether or not to move.

• Choose location if moving.

• Choose whether to sell owner-occupied housing.

• Choose whether to buy owner-occupied housing, and how much.

• Choose whether to sell rental real estate.

• Choose whether to buy rental real estate, and how much.

• Receive income and pay expenses.

• Make consumption-saving decision.

• Receive idiosyncratic income shock.

• Passage of time.

• End-of-life and bequest (if at maximum age).

2.1.3 Numerically Solving Each Stage

The first step in numerically solving a stage is to discretize the state space. My full model has six idiosyncratic

state variables: bondholdings, income type, owner-occupied housing, rental real estate, location, and age. I

use a separate array for each age group. For the other five variables, I define a five-dimensional array which

is the product of portfolio value, income type, owner-occupied housing, rental housing, and location grids. I

use portfolio value (bondholdings + real estate value) instead of bondholdings for the first dimension so that

8



buying or selling real estate does not move households around the grid too dramatically. While I use the full

product grid, significant savings might be possible with a dynamic spare grid approach, such as Brumm et

al. (2022) use for continuous-time models.

I then represent both value functions V and household state distributions λ as arrays AV and Aλ of

this form, and construct a pair of arrays for each (more or less) stage and age group. AV represents the

interpolation nodes of the function V on the grid and Aλ represents a grid of point masses on those same

grid points. I use the same grid for every stage to improve the reorderability and composability of the stages.

I then implement each stage as a pair of functions taking arrays to arrays: one taking end-of-stage V post to

beginning-of-stage V pre and one taking end-of-stage V post and beginning-of-stage λpre to end-of-stage λpost.

Four challenges arise in doing this in a performant manner. First, reinterpolating V pre onto the grid

points after each backwards induction step. Second, reinterpolating λpost back onto the grid points after

each forward simulation step. Third, choosing optimal consumption for each grid point at the consumption-

savings step. Fourth, simulating implementing the location choice stage, which requires a household at each

grid point to choose between 1713 locations, with over 200 million gridpoints. I provide optimized algorithms

implemented in Julia for overcoming each of these bottlenecks.

Because my model is a lifecycle model, I can begin by computing the bequest value at each terminal

gridpoint, then solve the entire household’s problem backwards from there. For age group a, the value

function V end
a at the end of each period is simply equal to the value function at the start of the following

period for the next age group,

V end
a = V start

a+1 .

To solve for prices, I apply the outer loop algorithm I describe above.

2.2 Transition Dynamics

Having solved for stationary steady state, we can now extend to transition dynamics. Consider a version of

my main model with perfect foresight after the onset shock. That is, while the onset of climate change is

unexpected, after the onset shock all households understand that climate climate will continue determinis-

tically along the median path, where εmt = 0 ∀t. To solve this, we can simply pick an end date far in the

future (I choose 2300) at which we assume that the economy has returned to its stationary steady state.

Then, given prices, we can simply use backwards induction to solve value functions from 2300 to 1990, then

simulate the household state distribution forward from 1990 to 2300. We can then solve for prices in an

outer loop.

9



Algorithm 2 Deterministic Transition Outer Loop

1. Solve 2300 stationary steady state.

2. Guess housing prices and rents for each location and decade.

3. Solve household problem for all households across entire transition path, from 1990

onset shock to 2300 new steady state.

4. Compute market clearing conditions.

5. Update housing price and rent guesses and repeat from Step 3 until convergence.

For age group a, the value function V end
at at the end of period t, is simply equal to the value function for

the following age group at the start of the following period,

V end
at = V start

a+1,t+1.

2.3 Aggregate Risk

To solve the model with aggregate risk, I apply a similar strategy. The difference is that value function now

depend on the aggregate state Γ, not only on the idiosyncratic state and a time index. The aggregate state

changes between the end of the household’s problem in one period and the beginning of the household’s

problem in the following period,

V end
at (x; Γ) = EΓ′

[
V start
a+1,t+1 (x; Γ

′) | Γ
]
.

Note that there is no need to solve the policy function. The policy function is calculated on-the-fly during

the simulation of the model within each period. Because we do not need to solve for the policy function,

we only need to use neural networks to approximate the value function (and, as an optimization, the price

function). This is essentially a form of supervised learning, which is generally much easier and more stable

than using a neural network to solve for a policy function.

To use a neural network to approximate V end
at (x; Γ) requires two steps. First, I must reduce the dimension

of Γ somehow. Second, I must train the neural network.

Dimension Reduction There are many ways to reduce the dimension of Γ. One fairly robust way to do

it is introduced in Han, Yang, and E (2023) with the DeepHAM method. However, I simply exploit the fact

that the aggregate state in my model is simply a function of initial stationary steady state (which does not

10



change and thus does not need to be inputted into the neural network) and the history of aggregate shocks

εmt following the onset shock.7 Thus, the neural net approximator for V end
at (x; Γ) requires only 5 + t inputs,

where t is the number of periods since the onset shock. Let N end
at represent this neural net approximator.

Then,

V end
at (x; Γ) = N end

at (x; v) .

I simply define a separate neural network approximator N end
at for each age a and period t.

Training To train this neural network, I first discretize the aggregate shock into 5 possible states for each

εmt , representing the median and each one- or two-standard deviation surprise. Let {ηk}5k=1 represent each

of these five realizations. Then the following holds with equality:

V end
at (x; Γ) =

5∑
k=1

V start
a+1,t+1 (x; Γ

′ (Γ, k))P (εmt = ηk) . (3)

I can then train the neural network by the following algorithm:

7I thank Robert Wagner for this idea.

11



Algorithm 3 Neural Network Training Loop

1. Solve 2300 stationary steady state.

2. Initialize a neural network N end
at for each age a and time t.

3. Draw a path of aggregate shocks {εmt }Tt=1 and compute the resulting temperature path

{SSTmt }Tt=1.

4. Working forwards, for each age a and time τ :

(a) Guess period-t prices {ρ̂it (εm1 , . . . , εmt ) , q̂it (ε
m
1 , . . . , εmt )}i∈I .

(b) Compute from neural network V̂ end
at (x; εm1 , . . . , εmt ) = N end

at (x; εm1 , . . . , εmt ) at each grid point x.

(c) Simulate λstart
at forward based on this V̂ end

at .

(d) Compute market clearing conditions within period t.

(e) Repeat from Step 4a until market clearing conditions satisfied within tolerance.

5. Working backwards, for each age a and time τ :

(a) For each k ∈ {1, . . . , 5}:

i. Guess period-t + 1 prices {ρit+1 (ε
m
1 , . . . , εmt , ηk) , qit+1 (ε

m
1 , . . . , εmt , ηk)}i∈I for each location

i.

ii. Compute V̂ end
at+1 (x; Γ, ε

m
1 , . . . , εmt , ηk) = N end

at (x; εm1 , . . . , εmt , ηk).

iii. Simulate λstart
at+1 forward based on this V̂ end

at+1.

iv. Compute market clearing conditions within period t+ 1

v. Repeat from step 5a(i) until market clearing conditions satisfied within tolerance.

vi. Iterate backwards to obtain V̂ start
at+1 (x; εm1 , . . . , εmt , ηk).

(b) Compute

Ṽ end
at (x; εm1 , . . . , εmt ) =

5∑
k=1

V̂ start
at+1 (x; εm1 , . . . , εmt , ηk)P (εmt = ηk)

(c) Update N end
at with error target N end

at (x; εm1 , . . . , εmt )− Ṽ end
at (x; εm1 , . . . , εmt ) .

In practice, I move the determination of prices to the outer loop and use a neural network to guess prices

once for each draw of the aggregate shock path. I then update the price network using excess supply of

rental real estate and rental properties for each location: the errors in the market clearing conditions. This

is the approach of Azinovic, et al. (2023)

12



2.4 Greater Generality

2.5 Optimized Algorithms for Interpolations, Choice Probabilities, and Opti-

mal Choice

The primary numerical methods contribution in this paper is the use of deep learning (neural networks) to

solve for prices and household conditional continuation values, as a function of aggregate uncertainty, given

the aggregate state.

The key insight of the deep learning method is that, if a household knows the current utility and contin-

uation values resulting from any action, then conventional methods can be used to solve the policy function.

With one or two dimensions of heterogeneity, this is generally no problem. But because the model has so

many individual states (213 million), it was necessary to develop a few custom algorithms for performance.

These supplementary algorithms overcome some computational bottlenecks when scaling up discrete-time

heterogeneous-agent models to large numbers of individual states and locations. In the hope that someone

finds them useful, I have made a separate Github repository for them, in highly-optimized parallelized Julia

code.

2.5.1 All-at-once interpolating functions and distributions on endogenous gridpoints

Speedup factor: log n (n = #(gridpoints), relative to individual lookups)

When solving value functions using backwards induction or simulating distributions forward, if the grid-

points are defined in terms of endogenous quantities (e.g. wealth), you often have to reinterpolate the

function or distribution back onto the grid. Existing interpolation libraries look up each gridpoint indepen-

dently. With n gridpoints, each query is O(log n) and the whole reinterpolation is O(n log n). But if the

grid is monotonic, you only need to iterate over each grid once, which you can do in O(n) time.

Reinterpolating is slightly different for functions and distributions, since distribution approximations

depend on the density of gridpoints.

2.5.2 Computing choice probabilities for heterogeneous agents with a single matrix multipli-

cation

Speedup factor: up to n0.62 or so, with big improvement on constant (if n = #(locations), relative to naive

approach)

With n locations and m possible within-location agent states, if agents receive Gumbel-distributed loca-

tion preferences, then to solve for the value function and choice probabilities, you have to solve for n*n*m

possible agent-choice pairs. Luckily, this can be constructed as a single matrix multiplication, which can

even be done non-allocatingly if set up properly. Highly-optimized linear algebra libraries can then be used.

13



2.5.3 All-at-once solving monotone decision function for heterogenous agents

Speedup factor: n (n = #(gridpoints), relative to naive individual lookups. Speedup factor log n over

optimized individual lookups)

In many models, agents must make consumption savings decisions. Assuming a discretized wealth grid,

the most flexible solution is to maximize over all possible continuation values for each agent, but this requires

O(n2) total computations. If both continuation value and optimal saving are increasing in wealth, each agent

needs only consider possible choices that lie between the choices of adjacent agents. By using binary search for

individual lookups and a form of modified binary search to constrain the search space for individual agents,

we can compute the optimal decisions of n agents who differ only by wealth using only O(n) computations.

14


	Introduction
	Computational Method
	Solving Discrete-Time Heterogeneous-Agent Models in Stationary Steady State
	Solving the Household's Problem
	Decomposing a Complex Idiosyncratic Decomposition into Stages
	Numerically Solving Each Stage

	Transition Dynamics
	Aggregate Risk
	Greater Generality
	Optimized Algorithms for Interpolations, Choice Probabilities, and Optimal Choice
	All-at-once interpolating functions and distributions on endogenous gridpoints
	Computing choice probabilities for heterogeneous agents with a single matrix multiplication
	All-at-once solving monotone decision function for heterogenous agents



